Identification and characterization of Lateral Organ Boundaries Domain genes in mulberry, Morus notabilis
نویسندگان
چکیده
Genes from the plant specific Lateral Organ Boundaries Domain (LBD) family encode transcriptional regulators that have a variety of functions in various physiological and developmental processes. In the present study, 31 LBD genes were identified in the mulberry genome. The genome features of all MnLBD genes and phylogenetic studies with Arabidopsis LBD protein sequences, accompanied by the expression analysis of each of the Morus LBD genes provide insights into the functional prediction of mulberry LBDs. The genome-wide surveys of the current mulberry genome have resulted in the identification of catalogs of MnLBD genes that may function in the development of leaf, root, and secondary metabolism in Morus sp.
منابع مشابه
Genome-Wide Identification and Characterization of Long Non-Coding RNAs from Mulberry (Morus notabilis) RNA-seq Data
Numerous sources of evidence suggest that most of the eukaryotic genome is transcribed into protein-coding mRNAs and also into a large number of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs), a group consisting of ncRNAs longer than 200 nucleotides, have been found to play critical roles in transcriptional, post-transcriptional, and epigenetic gene regulation across all kingdoms of life. Howe...
متن کاملAuxin Response Factor Genes Repertoire in Mulberry: Identification, and Structural, Functional and Evolutionary Analyses
Auxin Response Factors (ARFs) are at the core of the regulation mechanism for auxin-mediated responses, along with AUX/IAA proteins.They are critical in the auxin-mediated control of various biological responses including development and stress. A wild mulberry species genome has been sequenced and offers an opportunity to investigate this important gene family. A total of 17 ARFs have been ide...
متن کاملDraft genome sequence of the mulberry tree Morus notabilis
Human utilization of the mulberry-silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome ...
متن کاملMorusDB: a resource for mulberry genomics and genome biology
Mulberry is an important cultivated plant that has received the attention of biologists interested in sericulture and plant-insect interaction. Morus notabilis, a wild mulberry species with a minimal chromosome number is an ideal material for whole-genome sequencing and assembly. The genome and transcriptome of M. notabilis were sequenced and analyzed. In this article, a web-based and open-acce...
متن کاملGenome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry
Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis ...
متن کامل